
Peer-led Learning and Software Craftmanship At The BBC
Peer Group Learning and Assessment is a new approach to helping teams of
software developers to gain new skills - say Jason Gorman and Kerry Jones

It's an experimental coaching method that has had some early successes in a small
number of pilot programmes at progressive organisations. Here they present two

personal experiences of an initiative taking place in the TV Platforms section of the
BBC, in White City, London.

Introduction
Peer Group Learning and Assessment is a new
approach to helping teams of software developers to
gain new skills and to learn to apply those skills on their
projects. It's an experimental coaching method that has
had some early successes in a small number of pilot
programmes at progressive organisations including the
BBC. Here we present two personal experiences of the
initiative in TV Platforms at the BBC in White City,
London.

Why Peer-Group Learning & Assessment?
(The External Coach's View - Jason Gorman of Codemanship)

I've been helping software developers to write "better
code" since I went freelance in 1997. My experiences
working with hundreds of programmers across a wide
range of application domains and levels of ability, as well
as my own personal experiences of learning disciplines

like OO design, test-driven development and refactoring,
have led me to some useful insights which I'm now
applying with clients like the BBC.

The programmers who learned and improved the fastest
were invariably the ones who genuinely wanted to learn.
The ones who gained little from coaching were the ones
who weren't interested or motivated to learn. The key
factor then was not how good I was at teaching
programmers to do things the way I thought they should
be done, but how motivated they were to learn in the first
place.

I resolved to try a
different approach. By
focusing on trying to
inspire programmers so
that they might want to
learn, and on fostering
an environment in which
anyone who wants to
learn and improve
doesn't just feel, but in
every practical sense, is
supported in their efforts,
I'm finding that the
results are very
encouraging indeed.

Teams and individual
programmers need to
take ownership. They

must want to learn. They must want to write more
maintainable and more reliable code. Programming
computers is a practical skill, just like playing the guitar
or riding a bicycle. For sure, there's knowledge that can
be imparted by coaches like me. But ultimately
knowledge isn't enough. Understanding how to ride a
bicycle is not the same as being able to ride a bicycle.
Knowing where the chords are on a guitar's fretboard is
not the same as being able to play a song using those
chords.

I've worked with some very knowledgeable
programmers and been shocked and dismayed upon
reading their code. There's a world of difference
between knowing what we should be doing, and actually
doing it. The sad reality is that many programmers who
say they do TDD and refactoring, for example, really
don't. Not habitually, at least. From my own experience I
know that programmers who aren't in the habit of doing
things like writing a failing test before they write any new
code, or always looking for duplication and refactoring it
away, will almost certainly end up with poorer quality
software. And how knowledgeable they are makes little
difference if that knowledge doesn't translate into good
habits.

Peer-Group Learning and Assessment (PGLA) is a non-
traditional approach to helping programmers and teams
learn and improve at core disciplines. It's built on some
basic tenets:

People learn because they want to, and people
learn best in groups where everyone else is keen to
learn

Building habits over
longer periods is more
effective than
imparting knowledge
in the short-term
The best test of
whether a juggler can
juggle is to ask to see
him juggle
Organisations that
offer practical support
for learning, as
opposed to just
lipservice, will attract
and foster better
programmers

The software
craftsmanship movement

Key Points

The programmers who learned and improved the fastest were invariably
the ones who genuinely wanted to learn
Peer-Group Learning and Assessment (PGLA) is a non-traditional
approach to helping programmers and teams learn and improve at core
disciplines
People learn because they want to, and people learn best in groups
where everyone else is keen to learn
Building habits over longer periods is more effective than imparting
knowledge in the short-term
The best test of whether a juggler can juggle is to ask to see him juggle
Organisations that offer practical support for learning, as opposed to just
lipservice, will attract and foster better programmers
The programmers who have successfully passed a peer assessment in
"apprentice-level" TDD really can do TDD
Showing how we develop software, providing constructive feedback and
learning from our mistakes is essential for the development of software
engineering as a discipline

*

*

*

*

*
*

*

*

Case Study

www.codemanship.com

has many schools of thought about how best to instill
good habits and nurture professionalism and
responsibility among programmers. Peer-Group
Learning and Assessment is very much from the
"learning by doing" school of software craftsmanship.
There's no deep theoretical foundation or philosophy
behind it. It simply groups together programmers who
want to learn, helps them build a concensus about how
they think something should be done, gives them a
framework for focused and mindful practice over an
extended period of time, and helps them to slowly but
surely build up good habits.

It also helps them to test their habits in a more
meaningful and practical way, leading to a kind of peer-
to-peer certification that addresses some of the
shortcomings of traditional skill assessment techniques.

It's still early days, but I've been very impressed with the
results we've been getting. The programmers who have
successfully passed a peer assessment in "apprentice-
level" TDD really can do TDD. They're in the habit of
doing the things they agreed in their groups that they
should be doing. They write the assertion first. They
always run the tests after even the smallest refactoring.
They don't tolerate duplicate code and refactor
mercilessly. They always run the test to make sure it
fails for the right reasons. And so on. Each group has
their own habits, and therefore each group has mastered
their own school of test-driven development. It's theirs.
They own it. And that's what really seems to make the
difference.

The pioneers who went through Peer-Group Learning
and Assessment in TDD are now tackling the much
more challenging discipline of refactoring. They have
selected a matrix of common code smells and
commonly-applied refactorings and will spend many
hours over several months seeking out those smells in
their own code and practicing their refactorings to
eliminate them, all the while applying a set of good
habits they have agreed to in their group like "use
automated refactorings wherever possible" and "make
sure there's adequate test assurance before refactoring
any part of the code".

Meanwhile, those same pioneers have become TDD
coaches, helping new peer groups to define their own
school of TDD and to build up the good habits they
believe will lead to better code. This seems to increase
the buy-in and ownership of the coaches to their own
school of TDD. It also gives them ongoing practice at
TDD to help maintain these habits, and from a new
perspective, which is a great learning experience in
itself.

Peer-Group Learning and Assessment is more
challenging, no doubt. And some organisations will
certainly lack the will and the means to make it work for
them. But because it is challenging, and because it
really stretches programmers (and coaches), it is more
rewarding. Peer groups feel like they're really achieving
something. And they really are.

How we run Peer-Group Learning &
Assessment
(Peer-Group & Internal Coach Kerry Jones)

Over the past nine years I've constantly been on a steep
learning curve as a Software Engineer and as a
Technical Architect and, as a result, I've become
interested in how I learn to become an expert in specific
skills and more generally how people learn. I'm also
responsible for helping to find effective ways for our
team of 40 software engineers to learn how to become
expert software engineers. We've tried many different
approaches to teaching software engineering skills,
including sending all 40 engineers on the same training
course and employing experts on a contract basis to pair
with them on projects. The problem I have with week-
long training courses and training performed in short
bursts is that, as soon as you get back to work, you start
forgetting what it is that you've learned. If you're not
using that skill every day it's all forgotten far too quickly.
I believe that deliberate and repetitive practice are much
more effective ways to learn. If you're not forming habits
by practicing a specific skill you will never get to the
point where you start to gain a better insight. And that is
essential to becoming an expert.

There is research to validate these insights into learning.
Mary Poppendiek has recently presented on the topic of
Deliberate Practice in Software Engineering which
references publications and summaries of the research
field by Dr. K. Anders Ericsson.

Becoming an expert in any specific skill relies on:

The motivation of an individual to want to improve
Having a mentor available who can design exercises
based on the apprentices current skill level that will
instill good habits and stretch the learner
Deliberate practice and repetition of training
exercises, and
Immediate feedback so the learner can see the
improvement in their performance.

Here I explain the Software Craftsmanship Programme
Jason has introduced to us based around Peer-Group
Learning and Assessment. We also reflect on what
we've learned in the process of implementing it and
show how we are creating an environment where
everyone can learn to become better software
engineers.

Software Craftsmanship Programme
We started our Software Craftsmanship Programme with
an initial trial group of eight Software Engineers. Most of
us were senior, so there was a fair amount of
development experience within the group. But, as we
quickly found out, we had a lot to learn, and still have.
The programme consists of a number of groups of about
eight engineers, including myself, progressing through
various stages of practice, starting with the more
fundamental skills and then moving on to the more
challenging disciplines. Once one group has

1.
2.

3.

4.

Case Study

www.codemanship.com

successfully passed their assessment - which means
they have been found by their peers to consistently
apply the good habits their group has agreed on - they
are then qualified to become coaches at that level of skill
and work with a new group of apprentices to help them
build a similar set of good habits. At the same time as
coaching new peer groups, the people from the first
group move on to learning a different skillset or a more
advanced level of practicing an existing discipline.

For each group, the process is the same:

Choose the skill that you'd like to improve
Attend an orientation day with an expert in the
chosen skill and a number of coaches to develop the
group's Skill Worksheet
Pair with others in your peer group, the coaches and
the expert until your Skill Worksheet is completed
Complete an assessment day where all the peers of
the group mark each other and decide on who
should pass or fail
Rinse and repeat

That's it in a nutshell, but there is a lot more detail in
each of these phases that needs to be explained and
understood, so let's start.

Choosing the skill
For groups new to this process, choosing the skill they'd
like to improve can be challenging. However, there is
one skill that we
believe to be a
fundamental basis for
the rest of the
software engineering
practices. That is Test
Driven Development
(TDD). As a result, all
three of our groups
have started with
"Apprentice-Level"
TDD. Our first group
after passing the
Apprentice Level TDD
have moved on to
Apprentice Level
Refactoring and are
also coaching the two
new groups in TDD.
Each group has eight
software engineers
with varying skills and
experience.

It's important to
highlight here that
noone in our 40-
person software
engineering team is exempt from this programme. It
doesn't matter how expert you think you are at a specific
skill one of the most important features of this way of
working is Peer Learning. Everyone in the group is

learning from each other. It's important to have an expert
who isn't part of the group pair with all the members of
the group at least once, however it's up to the group to
organise pairing sessions with the peers in their group
and to help each other complete their individual Skill
Worksheet. If you are lucky enough to have people who
really are experts in the skill participating in the group
then it gives them a great opportunity to help teach
everyone else in the group. I also firmly believe that an
expert will also learn a lot from the peers in the group.

Orientation Day
The orientation day is facilitated by an expert in the skill
who spends the first hour or so demonstrating the skill,
explaining what they do and the habits they have
developed and what they believe to be important.

The goal of the orientation day is for the members of the
peer group, excluding coaches and the expert, to
choose and agree on a set of 10-12 good habits that
they will have adopted in relation to the specific skill.
These habits will form the basis of the Skill Worksheet
for this group and they are what each of the peers will
assess each other on during the assessment day to
determine if they have passed or failed.

Our peer group choosing and agreeing on the 11 habits
that we wanted to adopt was an important aspect of our
peer learning. It created a sense of ownership amongst
the group. We had in fact created our own "brand" of

TDD and for the first time all eight of us agreed on what
TDD is, or at least what it is to us. We had an
established set of good habits that we wanted to learn
and we had all bought into them. We were influenced by
the expert in the room but the expert needs to facilitate

Figure 1. Completed Apprentice TDD Skill Worksheet for the first peer group.

1.
2.

3.

4.

5.

Case Study

www.codemanship.com

the discussion and to explain the reasoning behind why
they feel a specific habit is important. The expert can
also explain why other habits are bad and provide
insight into why they are not worth adopting. Ultimately
the decision on which habits to choose is entirely up to
the peer group. As this was apprentice level TDD we
decided to leave more complicated areas of TDD like
mock objects out of this round and to introduce them
during the next journeyman level of TDD. We also
decided to leave anything that was a bit controversial out
of apprentice level TDD and chose to discuss and
possibly adopt them again once we start the journeyman
level TDD.

The Skill Worksheet
Each individual in the peer group receives a Skill
Worksheet that will look something like Figure 1.

Our worksheets were designed to give every member of
the group at least 55 hours of pairing with their peers
and/or a coach while strictly following the habits on the
worksheet. The worksheets are completed when all of
the boxes on the sheet have been filled in by someone
from your peer group. To fill in a box or set of boxes a
peer must have worked with you for at least an hour and
confirmed that you followed the habits listed on the
sheet. Pairing sessions were two hours long and would
involve ping-pong pairing or passing control of the
keyboard after the first hour. During the pairing session
the person being signed off chooses a maximum of four
habits to concentrate on for this pairing session. At the
end of the session, if your pair agrees that you followed
those habits for the entire hour, they put their initials in
the relevant boxes. If you're not the person at the
keyboard during a pairing session then your job is to
point out where your pairing partner is not following the
agreed good habits.

The pairing sessions force every software engineer to
perform the skills over and over again, reinforcing the
learning until the good habits we had chosen became
second nature. By the time we had reached the end of
our worksheet we were doing TDD with a good bunch of
habits automatically. We didn't have to think about the
process any more. Some of us actually started to feel
uncomfortable if we saw someone do a refactoring and
leave it too long before they ran the tests again.

Completing the worksheets in this way meant that we
were setting aside time to deliberately practice TDD.
Sometimes we were working on real code bases and
sometimes we were working on a set of TDD practice
examples but throughout it all we were deliberately
practising TDD and repeating training exercises.

Assessment Day
The assessment day was hard, even after setting aside
time over the previous four months to practice. One of
the reasons it was hard was that one of the major goals
of the day was to prove that we could TDD all day and
maintain the good habits that we had been practising

without making too many mistakes. The day was split
into coding sessions of an hour. Each session was
recorded using a screen capture tool, like Camtasia
Studio. After each session, we would swap desks and
watch back the recording of one of our peer's sessions,
keeping an eye out for any instances where they failed
to apply one of the good habits we had agreed on in the
orientation. If we spotted them failing to apply a habit
(e.g., refactoring when the test was failing), then we
would put a big "X" on an empty worksheet against the
habit we caught them breaking. If you got three or more
X's during any 1-hour coding session, you failed the
assessment. If one of the sessions was done in a pair,
then both members of that pair either passed or failed
together, so it didn't matter who was typing and who was
navigating when the mistake was made.

This is what we did on the assessment day:

Individually record yourself solving a pre-defined
problem using TDD in 2 x 25min sessions with a 5
minute break in between.
Swap desks with someone from your peer group
and mark your peer's session using a blank skill
worksheet
30min break
Pair with someone from your peer group to solve a
pre-defined problem using TDD in 2x25min sessions
Swap desks with a different pair from your peer
group and mark their session
1hr lunch break
Individually record yourself solving a pre-defined
problem using TDD in 2x25min sessions
The group expert marks this final recording and
because he has eight hours of sessions to get
through these are not marked on the day

What we found and what we changed as a
result
One of the most important ideas behind peer learning
and the worksheet is that you need to set aside lots of
time to practice. A few of the engineers in the first group
found it hard to set aside the time required to complete
their worksheet. In both cases this was because of major
project deadlines where one person was working on
projects that didn't involve writing any code and another
was working in a language that doesn't have good
enough tool support for unit testing or refactoring. They
found it hard to take time outside of their projects to do
the practice they required. This highlighted the fact that
you absolutely need support from senior stakeholders in
implementing a programme like this. If the support
doesn't come from high enough in the company it is
difficult to find the time to complete the worksheet.. To
allow these two engineers to complete the worksheet we
pushed the date of the assessment back one month and
I worked with their project manager and line manager to
help them find the time they needed to complete the
worksheet.

1.

2.

3.
4.

5.

6.
7.

8.

Case Study

www.codemanship.com

An engineer who is aiming to complete a worksheet
really needs to set aside a minimum of two hours a week
to pair with someone in their peer group. Anyone who
didn't do this found it hard the closer we got to the
assessment day because they had too many pairing
sessions to complete and were struggling to fit them in
around their other work. If you left most of your pairing
sessions towards the end, you were effectively
cramming for an exam. A result of the cramming is that
you don't pick up the habits as well as other engineers
and have to concentrate more on the assessment day
and don't do as well on the assessments. To get around
this issue and make sure peers are pairing every week,
we've introduced a weekly stand-up so that peers can
check each others progress on their worksheet and
organise some time that week to pair.

Two engineers in my group found it easy to complete the
worksheet within a couple of months because they were
working on the same project together and were already
using TDD on the project. As they were developing new
features at work for one of our products they were also
able to sign each others worksheet, and it was possible
for them to spend the two hours required for a pairing
session almost every day. This is the most effective way
to complete a worksheet with minimal disruption to your
daily work.

Towards the end of our
worksheet, a mock
assessment was
introduced where we set
aside a day to go through
an assessment as if it was
a real assessment day.
When we did this most of
us failed. It was a valuable
experience because we
had still not developed the
habits we were hoping to
by this point. This left us
with some time to practice
more and to work on the areas which hadn't become
habits. It would have been better if these were corrected
early on, so in future groups we will be performing a
mock assessment when they are about half-way through
completing the worksheet.

Once my group had successfully completed apprentice-
level TDD, we became coaches for the next two groups
starting their apprentice-level TDD. A promising sign is
that, the responsibility of leading and coaching new
groups through the same process, the peers from my
group are showing greater enthusiasm for the
programme. They are now seen as coaches of a specific
skill within the department and feel empowered because
they help define and drive the process and are starting
to teach our other software engineers.

Gathering Empirical Evidence
One of the areas that Jason and I are interested in is
how we can use software metrics to gather empirical

data and evidence of the improvement in code quality as
a result of the Peer-Group Learning & Assessment
(PGLA). What we will be looking for in the future is a
way to demonstrate more objectively that software is
better tested, simpler and easier to change. We don't yet
have enough data to provide conclusive proof that the
software craftsmanship programme improves the quality
of our code. However, the initial results are encouraging,
as indicated in Table 1.
.

In Table 1 - LOC is the Lines of Code, Line/Branch
Coverage refers to the unit test code coverage and
Complexity is measured using (Cyclometric Complexity /
the number of methods).

Each of the rows in Table 1 is a Java code base
developed by software teams that were made up of a
few people who were participating in the TDD
apprentice-level training, and some who weren't. The
software in the top section was developed before the
TDD apprentice-level coaching started. The software in
the bottom section existed before we started our first
peer group but has been developed further since the
introduction of PGLA. The software in both sections has
been developed by teams involving engineers in the first

TDD peer group before and after their TDD apprentice-
level assessments.

Keith Braithwaite's research on measuring the effect of
TDD shows what we expect to be different in code that
is developed using TDD. Rather simplistically, we expect
the code to be better tested and for classes and
methods to be less complex. To give us a simple
indication of this at first we've chosen to use code
coverage, percentage of long methods, average method
complexity and percentage of duplicate code. What's
interesting about these results is that the code
developed before the TDD apprentice-level peer group
started was actually developed using what the engineers
believed at the time to be TDD. After completing the
TDD apprentice-level assessments, the code coverage
seems to be increasing and the overall complexity and
length of methods is decreasing along with the amount
of duplicate code, which is a promising trend.

Before TDD Apprentice Peer Learning

LOC % Code Coverage % Long Methods Average method Complexity% Duplicate Code
2013 34.1% 2.53% 2.1 2.9%
6902 54.0% 0.30% 1.9 14.4%
2144 89.7% 1.07% 2.1 6.3%
5171 64.1% 1.26% 2.4 7.7%

During and After TDD Apprentice Peer Learning

LOC % Code Coverage % Long Methods Average method Complexity% Duplicate Code
1463 96.7% 0.27% 1.5 0.80%
2550 96.3% 1.18% 1.6 2.1%

Table 1: Software Metrics of projects developed by the team before, during and after the TDD apprentice-level assessments

Case Study

www.codemanship.com

Conclusion
The first group of TDD apprentices, including myself,
was run as a trial within our department so we could
assess the benefits of the peer learning approach. As
the Technical Design Authority (TDA) for our code
bases, being a part of a peer learning group has been a
real eye-opener. Although we only have a small amount
of empirical evidence that the software quality has
improved, it's obvious when pairing with those of us who
have passed the TDD assessment that the quality of the
new code we're producing has improved. The code is
better tested, the engineers are regularly improving the
design of existing code, and, because the new code is
developed using TDD, the new code is more modifiable
and maintainable than our previous software projects.

So far we've not publicised our software craftsmanship
programme to departments outside of our own.
However, the buzz created by our software engineers
and managers is starting to get noticed in other
departments. Managers who are running software teams
close to us recognise the value of helping their software
engineers improve and work towards becoming experts,
and are starting to ask questions about what we're
doing. One of our goals in future is to find out if there's
enough appetite from other departments, and to work
with them to help spread PGLA to help more software
engineers become experts.

The feedback from the first group of engineers and
coaches, as well as the improved quality of the code we
are now producing, has allowed us to get the funding
approved to scale up the peer-group learning for TDD
apprentice-level to two more groups of eight engineers,
and to start the first peer group on the refactoring
apprentice-level. Now that 16 new engineers are starting
their TDD apprentice-level, and the results of the first
group are becoming visible, being a part of the peer-
group learning programme has become something that
most - if not all - of our software engineers really want.
As we've not been able to scale the process any more

quickly, there are a number of engineers who were
upset at not being included in one of the new peer
groups. They've heard stories from the first peer group
about just how much they have learned and improved
over the past six months. There's a real sense of
achievement in passing the peer-group assessments,
and that's been noticed by everyone in our team.
Passing the TDD apprentice-level assessment is a goal
that's also been written into some of our software
engineers' yearly appraisals, which shows our
commitment to continuing with this programme in the
immediate future.

I believe in learning by doing. The Software
Craftsmanship movement that has grown in recent years
is great because more than ever software engineers are
showing each other how they write code. Showing how
we develop software, providing constructive feedback
and learning from our mistakes is essential for the
development of software engineering as a discipline.
Peer-Group Learning and Assessment promotes shared
learning and creates an environment where people take
responsibility for learning and practising. It provides a
structure where software engineers can learn from a
mentor, allocate time for deliberate practice and get
immediate feedback during pairing sessions and
assessments on their performance.

Jason Gorman is a director of Codemanship Ltd and has coached hundreds of professionals in the key disciplines of
software craftsmanship. His web site parlezuml.com has been visited by more than 1 million people since 2003. He
chaired the first international conference on Software Craftsmanship in 2009, and contributes to other conferences
including XPDay, Software Practice Advancement and CITCON. He is also executive producer of "Boffoonery!", a
comedy benefit in aid of Bletchley Park.

Kerry Jones is a Technical Architect who specialises in broadcast and digital media. He worked in the TV Platforms
Group of BBC Future Media & Technology, the team responsible for delivering the BBC Red Button service and
interactive applications including BBC iPlayer on internet connected TVs. He was also on the review panel for papers
submitted to Software Craftsmanship 2009

Case Study

www.codemanship.com

